(© The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)
http://www.Assembly-Journal.com

Detecting operating systems without
Microsoft Advanced Programming Interface

Thomas Kruse
Universitas Virtualis

Abstract

Today nearly all programmers use the Advanced Programmimerfiace (API) to receive information’s about given system
values. By using this API's, we don't have to take care whigérating system is currently available.

But sometimes it might be needful to avoid the usage of sudls. ARis situation is given during development of software
protections in order to avoid importing functions which -eatally - will point a reverse engineer to a solution.

This essay show up a way to detect the today given operatstgrsyg from Microsoft: Windows 95, 98, ME - the non NT-based
operating systems - and Windows NT4, 2000, XP, 2003 - theaN@eboperating systems.

The shown source code is in Microsoft Assembler style (MAGM [
Keywords. Microsoft Operating Systems, Software Protection, AsgeRlmgramming, System Internals

The authorThomas Kruse has his main research focus on operating-system indepéieder optimising and software-protection developmentisHessociate
Editor of Assembly-Journal and CodeBreakers-Journal.

Microsoft and Windows are registered trademarks of the d4ioft Corporation

The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

[. Introduction

When analysing the structure of the Thread Environment IBIGEB - also known as Thread Information Block TIB) on
different operating systems, we find additional data fo#dwby this structure. This additional data seems to have -amn n
NT-based operating systems - no logical structure or ledgtmition, where NT-based operating systems store therirdton
inside the Process Environment Block (PEB). The only waydarg out the meaning of this data for non NT-based operating
systems is to debug the same application on different dperaystems[2].

Il. Application start

There are many ways in detecting an operating system. Itddeeildone by using the Windows API functi@etVersionEx[1]
and checking the version values returned in struc@®/ERSIONINFO(EX)[1]or by accessing Register CS. Another way is
analysing the registers during start up of an applicatidrer@ are several rules for them on how operating systemsagaep
several registerbeforeexecuting the first instruction:

Startup val ues for Wndows 95/98/ ME
EAX == Application Entry Point
EBX == 00530000h, a fixed val ue

Startup val ues for W ndows NT/ 2000/ XP/ 2003
EAX == NULL
EBX == 7FFDFO00h, pointer to (PEB)

By knowing this rules we where able to check the operatintesydase during start up. But then we need to store the registe
values of EAX and EBX for further usage - or resolve them in ffedént way.

A. Thread Environment Block

The TEB is prepared during application start up and containtprs to thread related additional data. The TEB strectsir
available on all operating systems. It's size is defined tb Bftes. The TEB address could be resolved by accessing the
segment register FS in the following way:

assurme fs:nothing
nov eax, f s: [18h]

The register EAX will contain the base address of this blddie TEB contains - at address 18h inside the structure - agyoin
to itself:

pSel f DWORD ? ; 18h pointer to TEB/TIB

The last entry of TEB is the pointer to process database. Cihd$&d operating systems this value will point to the addres
of Process Environment Block (see Section [I-C)

B. Additional data following TEB

Told in Section |, this additional data has no logical stiuetand differs on each non NT-based operating system. Odaiis
NT, 2000, XP and 2003 this additional Data is defined as fatow

NT_TEB_ADDON st r uct

Last ErrorVal ue DWORD ? ; 00h (34h TEB)
Last St at usVal ue DWORD ? ; 04h (38h TEB)
Count OwmnedLocks DWORD ? ; 08h (3Ch TEB)
Har dEr r or sMode DWORD ? ; 0Ch (40h TEB)

2

Copyright © 2004 and published by the Assembly-Programming-Journaglé& print or electronic copies for personal use only amerpiged. Reproduction
and distribution without permission is prohibited.

The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

NT_TEB_ADDON ends

Windows 95, 98, ME didn’t have such a structure; the add#iatata is scrambled!
C. Process Environment Block

Windows NT-based operating systems store process relatdinside the Process Environment Block. The address sf thi
structure is avaliable by accessing the segment register FS

assurme fs:nothing
nov eax, fs: [30h]

The register EAX will contain the base address of PEB.
pProcess DWORD ? ; 30h pointer to process database
The version information is stored inside the PEB structure:

OSMaj or Ver si on DWORD ? ;. Adh <=4->NT / 5->2K/ XP/ 2K3
OSM nor Ver si on DWORD ? ; A8Bh 0->2K [/ 1->XP /| 2->2K3

D. NT-based definitions

Windows NT, 2000, XP and 2003 use fixed addresses to store REBEB. The PEB is always stored at address 7FFDF000h
and TEB is starting at 7FFDEO0Oh. By knowing these two fixeldies, it is possible to detect the operating system base.

[1l. The Trick

Section 1I-B has shown an add-on structure for NT-based atimgr systems. The data exists on non NT-based operating
systems, too. But it is stored in a different way. To resolger@ct memory positions - related to detect the operatirstiesy
- we use a trick the analyse the additional data.

If we take a closer look to the NTEB_ADDON structure shown in Section 1I-B, we see the erltastErrorValue Nearly
all Windows API's will return an error value which is accessi via GetLastError[1]. In addition to this, it is possible to
manipulate thd.astErrorValuevia SetLastError[1] API. By using this APl and monitoring the memory area behimel TEB,
the locations for thé.astErrorValueare:

W ndows 95 - TEB-base + 60h
W ndows 98 - TEB-base + 60h
W ndows ME - TEB-base + 74h

Now we are able to detect Windows ME or Windows 95/98. Firepgb our solution, but not the final one. It is possible to
detect a difference between Windows 95 and Windows 98.

Section Il showed the start up values and their rules. Thé gpavalue of EBX on non NT-based OS is 00530000h. Exactly
this value will be found inside the additional data part -seldo the now resolvedastErrorValue By analysing it's location,
the result will be:

W ndows 95 - TEB-base + 58h
W ndows 98 - TEB-base + 54h
W ndows ME - TEB-base + 7Ch

Now we are able to differ between each non NT-based operaistgm.

3

Copyright © 2004 and published by the Assembly-Programming-Journaglé& print or electronic copies for personal use only amerpiged. Reproduction
and distribution without permission is prohibited.

The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

V. Code creation

Right now, we where able the detect the version information dach operating system. We want an operating system
independent code, we need to structure the given informatidlso it should be possible to resolve the version infation
workflow independenSection VI will show the complete solution in Assembler.

First of all, we get the base addresses of PEB and TEB andveeitd operating system base by analysing them:

assume fs:nothing

nov ebx, fs:[18h] ; get self pointer from TEB
nov eax, fs: [30h] ; get pointer to PEB / database
i f eax==7FFDF000h && ebx==7FFDEO0Oh
; W nNT based
. el se
; W n9X based
.endif ; of base check NT/9X

The version information for NT-based operation systemstigsed inside PEB. We only have to analyse the values of
OSMajorVersiorand OSMinor\Version

nov ebx, [eax+0A8h] ; get OSM nor Version
nov eax, [eax+0A4h] ; get OSMaj or Version
Jf eax==5 && ebx==0 ; is it Wndows 20007?
.elseif eax==5 && ebx==1 ; is it Wndows XP?
.elseif eax==5 && ebx==2 ; is it Wndows 2003?
.elsei f eax<=4 ;is it Wndows NT?
.endif

Non NT-based operating systems could be detected by anglylse additional data area behind TEB, searching the value
00530000h:

nov edx, 00530000h ; the value to search

nov eax, fs:[18h] ; get the TEB base address
nov ebx, [eax+58h] ; TEB-base + 58h (W®5)

nov ecx, [eax+7Ch] ; TEB-base + 7Ch (WE)

nov eax, [eax+54h] ; TEB-base + 54h (\V@8)

Jf ebx==edx ; is it Wndows 95?7

.el sei f eax==edx ; is it Wndows 98?

.el sei f ecx==edx ; is it Wndows ME?

.endif

V. Conclusions

Resolving the operating system by using this technique g one possibility to avoid the usage of Advanced Prograngmin
Interface functions. Other functions, for exam@etCommandLine[1]lsDebuggerPresent[1¢r named functions in this essay
could be "rewritten” in the same way. In other words: the regeengineer isn't able to sbteakpointson API function calls,
because they didn't exist. And mixing different operatitygtem solutions together makes life even harder for him.

References

[1] Microsoft Corporation,Microsoft Developer Networkhttp://msdm.microsoft.com
[2] Yuschuk, O.,Olly Debugger http://home.t-online.de/home/ollydbg
[3] Hutchenson, S.MASM V8§ http://www.masmforum.com

4

Copyright © 2004 and published by the Assembly-Programming-Journaglé& print or electronic copies for personal use only amerpiged. Reproduction
and distribution without permission is prohibited.

The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

VI. Appendix
. const
;-- return values from OS_Get OS
OS_UNKNOWN equ -1
OS_W N95 equ 1
OS_W N98 equ 2
OS_W NMVE equ 3
OS_W NNT equ 4
OS_ W N2K equ 5
OS_W NXP equ 6
OS_W N2K3 equ 7
. code
OS_Get OS proc
| ocal _theRet ur nVal ue: DWORD
pushad ; store all registers
nov _theRet urnVal ue, 0S_UNKNOMN
assume fs:nothing
nov ebx, fs: [18h] ; get self pointer from TEB
nov eax, fs: [30h] ; get pointer to PEB / database
i f eax==7FFDFO00h && ebx==7FFDEOO0Oh ; W nNT based
nov ebx, [eax+0A8h] ; get OSM nor Version
nov eax, [eax+0A4h] ; get OSMaj or Version
i f eax==5 && ebx==0 ; is it Wndows 20007
nmov _theReturnVal ue, 0OS_ W N2K
.elseif eax==5 && ebx==1; is it Wndows XP?
nmov _theRet urnVal ue, OS_W NXP
.elseif eax==5 && ebx==2 ; is it Wndows 20037
nov _theReturnVal ue, 0OS_W N2K3
.elseif eax<=4 ; Is it Wndows NT?
nmov _theRet urnVal ue, OS_W NNT
.endif
. el se 7 Wn9X based
nov edx, 00530000h ; the magic value to search
nov eax, fs:[18h] ; get the TEB base address
nov ebx, [eax+58h] ; TEB-base + 58h (W®5)
nov ecx, [eax+7Ch] ; TEB-base + 7Ch (WE)
nov eax, [eax+54h] ; TEB-base + 54h (\V98)
i f ebx==edx ; is it Wndows 95?
nov _theReturnVal ue, 0S_W N95
.el sei f eax==edx ; is it Wndows 987
nmov _theReturnVal ue, OS_W N98
.el sei f ecx==edx ; is it Wndows ME?
nov _theReturnVal ue, OS_W NVE
.endif
.endif ; of base check NT/9X
popad ; restore all registers
nmov eax, _t heReturnVal ue
ret ; return to caller

OS _Get OS endp

5

Copyright © 2004 and published by the Assembly-Programming-Journaglé& print or electronic copies for personal use only amerpiged. Reproduction
and distribution without permission is prohibited.

