
The Simple File System 13 January 2022

Original Design by Brendan Trotter

This documentation and minor additions by Benjamin David Lunt
Copyright (c) Forever Young Software 2017-2022

fys [at] fysnet [dot] net
Version 1.10 release

You may distribute this document in its entirety and/or use this information for non-commercial or education use
without the author’s permission. This document may not be used commercially unless you obtain prior written
consent from the author listed above. The implementation of this file system is free from any restrictions and may be
used and/or implemented where and how you see fit. Only this documentation is restricted and copyrighted.

FYSOS and the Simple File System
This document pertains to and is written for the purpose of adding this file system to FYSOS found at:

www.fysnet.net/fysos.htm

It adds small changes to some parts of the original file system design and does so for this purpose. Credit for the
original design goes to Brendan Trotter and his original design’s specification can be found at:

https://web.archive.org/web/20170315134201/https://www.d-rift.nl/combuster/vdisk/sfs.html

The additions and modifications will be discussed in detail throughout this document. See the end of this document
for FYSOS specific items.

A Brief Summary
There is currently no widely accepted format for freely exchanging data on physical media between computers and
other devices. Instead, people have been using a variety of file systems that are either not widely accepted or subject
to technical, licensing, copyright or patent restrictions.

The primary purpose of the Simple File System is to facilitate the free exchange of data on physical media without
unnecessary restrictions or complexity. For this reason, the Simple File System has been designed in such a way
that it is easy to understand and implement.

The Simple File System (SFS) contains a Super Block, a Reserved Area, a Data Block Area, a Free Space Area,
and a Metadata area called the Index Data Area. Files are stored in sequential blocks leaving no fragmentation,
allowing 64-bit addresses and sizes, and allows more than 16,320 bytes for path and file names. However, the SFS
does not have features like permissions, symbolic information, or attributes like other files systems. The SFS is
intended to be mostly a write-once file system, though a properly written driver could easily and successfully use it
as a read and write file system.

Definitions
The following is a list of definitions to help explain and clear up different aspects of this document.
▪ Block: A block of physical sectors on the media, starting from one sector, incrementing by powers of

two.
▪ LBN: Linear Block Number, a block number starting at the beginning of the volume. This is not to be

confused with LBA, Linear Block Address. LBA is relative to the start of the media. LBN is relative to
the start of the volume.

▪ Volume: A set of sequentially consecutive blocks on the media allocated by the partitioning scheme.
All blocks within a volume are between LBN 0 and LBN n, n being the last block in the volume. No
sector or block outside of this area may be touched by the SFS file system driver.

▪ Boot Sector: The first block within the volume, LBN 0.

An Overlook of a Typical SFS Partition
There are a few items in a SFS volume that must be set to fixed values. The boot sector and location, size and
location of the Super Block, and size and location of the Index Data Area.

The Boot Sector is always at LBN 0. Also residing in LBN 0 is a Super Block that contains information about the
volume. At the end of the volume resides the Index Data Area. This Index Data Area holds information about the
files stored on the volume. Somewhere in-between the Super Block and this Index Data Area is the Data Block Area
as well as the Free Block Area.

The SFS was originally designed to be compatible with other file systems in mind, therefore allowing a MBR with the
standard four partition entries to reside in LBN 0 as well. However, this is a rare case and usually only would exist
when no partitioning scheme is used. For example, a USB thumb drive can be formatted with a single volume
occupying the whole media, with a FAT-32 file system. This would mean that a FAT-32 BIOS Parameter Block
occupies the first block of the media. If the FAT-32 is formatted to only use the first half of the media, the SFS format
could occupy the last part of the media.

This works because the SFS has its Super Block past the point of the FAT-32’s BPB but before the point where any
partition table entries would exist. Then the SFS marks the FAT-32 part of the media as reserved within its Super
Block. See the original specification for more on this subject.

The remaining part of this document does not include, nor will it document any more information about how to have
another file system co-exist in the same volume as the SFS. As far as this document is concerned, the SFS occupies
the whole volume.

A typical SFS formatted volume will look something like what is shown in the figure below. The Boot Code and Data,
Super Block, and any remaining boot code and/or data reside in LSB 0. Then any remaining sectors reserved for
boot code or other data follow, with the Data Block Area, the Free Block Area, and finally the Index Data Area.

Figure 1: Typical SFS Volume

The Boot and Reserved Area
The first block contains any necessary code and data to either completely load a capable booting system or simply
contains zeros when booting this volume is not required. If booting this volume is an option, the first block and any
blocks in the Reserved Area are available for use. The size of the Reserved Area is predetermined and stored in the
Super Block, which is stored within this first block of the volume and described next.

If a MBR Partition Table is used, with one or more of these entries pointing to an SFS partition,
each of these entries should be assigned the value of 0x53 in the ID field of the partition entry.
If a GPT is used, the original author has assigned the GUID: 4EBF0E06-11BF-450C-1A06-
534653534653

The Super Block
The Super Block is contained within the first block of the volume and has the format shown below. It must reside at
offset 0x18E within this first block.

struct S_SFS_SUPER {

 bit64s time_stamp; // Time Stamp of when volume has changed.

 bit64u data_size; // Size of Data Area in blocks

 bit64u index_size; // Size of Index Area in bytes

 bit8u magic[3]; // signature ‘SFS’ (0x534653)

 bit8u version; // SFS version (0x10 = 1.0, 0x1A = 1.10)

 bit64u total_blocks; // Total number of blocks in volume (including reserved area)

 bit32u rsvd_blocks; // Number of reserved blocks

 bit8u block_size; // log(x+7) of block size (x = 2 = 512)

 bit8u crc; // Zero sum of bytes above

};

All LSB pointers in the Super Block are zero based from the start of the volume. All values, including other data
structures within this specification, are written and read as little-endian format, with least significant byte read/written
first and most significant byte last.

The time_stamp field follows the format explained later and is updated anytime the data_size field or index_size field
changes.

The data_size field is the count of blocks used for the Data Block Area. This is the area used to hold the file contents
and explained later.

The index_size field is the size in bytes of the Index Data Area, the area holding the file metadata and is explained
later.

The magic field is a three character signature field holding ‘SFS’ (0x534653) indicating that this is a Simple File
System Super Block.

The version field holds the version of the specification this volume supports. The version is stored in BCD format,
with the high nibble holding the major version and the low nibble holding the minor version. This version of the
specification is 1.10, which means this field will hold a value of 0x1A.

The total_blocks field holds the 64-bit unsigned integer count of number of blocks in the whole volume. This is the
count of all blocks from the block that holds the Super Block to the ending block that holds the last sector of the Index
Data Area.

The rsvd_blocks field holds the 32-bit unsigned integer count of blocks before the Data Block Area. This includes
the block holding the Super Block and any sequential blocks that may be present following this first data block. This
field is used to know where the Data Block Area begins. This field is relative to the start of the volume.

The block_size field is used to calculate the size of a block. This field is calculated as shown on the next page.

bytes per block = 2 ^ (block_size + 7)

For example, if the block size is 512, the standard size of most media, the block_size field will hold a value of 2. For
1,024-byte sectors, a value of 3 is used, and so on.

If I were using the C Language to do this calculation, I would use something similar to the following.

unsigned int bytes_per_block = 1 << (super.block_size + 7);

The crc field is a zero-byte check sum of the fields from the magic field to this field, inclusive, so that when each byte
is added, ignoring any carryover larger than a byte, the resulting sum will be zero.

The Data Block Area
The Data Block Area is where all of the file data is stored. Each file starts at a specified block indicated in the Index
Data Area and is sequentially stored toward the end of the volume, block by block. Each file starts on a block
boundary.

There is no file metadata stored in this area, strictly only the contents of each file. All metadata is stored in the Index
Data Area.

This area may grow or shrink depending on the usage of the volume. When a new file is to be added, the host may
append to the end of the data area as long as there is enough sequentially spaced blocks to store the file data.
Intentional fragmentation of file data is prohibited. If the host deletes a file from the Index Data Area, the count of
blocks used to store the file’s data within this Data Block Area are said to be free for use. It is outside this specification
on how the host is to maintain free blocks within this Data Block Area. No blocks within the SFS volume may be
used to store or maintain this information.

Once a host finds that there are free blocks within the Data Block Area with enough sequentially stored blocks to hold
the file’s data, it may re-use these blocks without having to append to the Data Block Area.

If the host must append to the Data Block Area, it must first check that there is enough free space before the Index
Data Area. Once it has found there is enough, it must update the data_size field in the Super Block to indicate the
new size of the Data Block Area.

The Free Block Area
The Free Block Area is the blocks between the Data Block Area and the Index Data Area. These blocks are free for
use to resize the Data Block Area, by adding blocks toward the end of the volume, or to resize the Index Data Area
by adding blocks toward the start of the volume.

There are always free blocks in the Free Block Area until the point where the end of the Data Block Area meets the
start of the Index Data Area. Once this happens, there are no more free blocks to use for file data unless the host
has knowledge of unfragmented blocks within the Data Block Area. However, there is no more room for new unused
entries in the Index Data Area.

The Index Data Area
The Index Data Area is where all of the file metadata is stored. This area holds a count of 64-byte entries holding
various formats of data for the file system. The Index Data Area size is determined by the index_size field in the
Super Block and must be a multiple of 64 bytes.

The first entry is at the end of the last block in the volume, with each sequential entry toward the start of the volume.

Please note that if an Index Block Entry contains continuation entries, explained later, the Index
Data Entry associated with the continuation entries will be closest to the start of the volume, with
each continuation entry after it, toward the end of the volume.

The first entry in the Index Data Area, remembering that this is the last 64 bytes of the last block of the volume, is the
Volume ID entry. The last entry in the Index Data Area, remembering that this is the first 64 bytes of the Index Data
Area is the Start Marker entry.

Note that if the size of the Index Data Area is not a multiple of the block size, the Start Marker
entry may not be at the beginning of the block, but toward the end of the block depending on
how many entries are in this first block.

There are eight (8) types of valid entries in the Index Data Area with one more type being a continuation entry. Each
of the eight entries has a type field as the first byte of the 64-byte entry as well as a byte check sum. For example,
the following shows the format of the Unused Entry type.

struct S_SFS_UNUSED {

 bit8u type; // 0x10

 bit8u crc; // zero sum byte check sum

 bit8u resvd[62]; // reserved

};

Each type will start with this single unsigned 8-bit value ranging from 0x01 to 0x1A and shown below.

#define SFS_ENTRY_VOL_ID 0x01 // volume ID

#define SFS_ENTRY_START 0x02 // start marker

#define SFS_ENTRY_UNUSED 0x10 // unused

#define SFS_ENTRY_DIR 0x11 // directory entry

#define SFS_ENTRY_FILE 0x12 // file entry

#define SFS_ENTRY_UNUSABLE 0x18 // unusable entry (bad sector(s))

#define SFS_ENTRY_DIR_DEL 0x19 // deleted directory

#define SFS_ENTRY_FILE_DEL 0x1A // deleted file

The type field must be one of the eight listed above. If it is any other value, it is either an invalid entry or part of a
continuation entry, explained later.

The crc field is the byte sum of all 64 bytes in this entry and all 64 bytes of each continuation entry linked to this
entry.

Please note that even if not all of the bytes are used in the continuation entries for that particular
entry type, all 64 bytes are still calculated within this crc value and this crc field only exists in the
first entry before any continuation entries.

The Volume ID Entry
The Volume ID entry is as follows and holds the name of this volume as well as a time stamp of when it was created.
All SFS volumes must contain this entry and it must be the first entry in the Index Data Area.

struct S_SFS_VOL_ID {

 bit8u type; // 0x01

 bit8u crc; // zero sum byte check sum

 bit16u resvd; // reserved

 bit64s time_stamp; // time of media format/volume creation

 bit8u name[52]; // UTF-8 null terminated

};

All reserved fields in any entry type are to be written as zeros at creation time and preserved
when read and written again.

The time_stamp field is written to at volume creation time and is then not normally ever changed. This field
holds the time of day when the volume was created and this format is explained later.

The name field holds the volume name usually written to at creation time but may change throughout the life
of the volume. The format of this field and all character-based fields is explained later.

The Start Marker Entry
The Start Marker entry is as follows and marks the last entry in the Index Data Area.

struct S_SFS_START {

 bit8u type; // 0x02

 bit8u crc; // zero sum byte check sum

 bit8u resvd[62]; // reserved

};

Remember that the Start Marker Entry is the entry closest to the start of the volume and may or may not be
on a block boundary. For example, if the Block Size is 512 bytes and the Index Data Area is 1,408 bytes,
the Index Data Area will occupy the last three blocks of the volume. However, the first 128 bytes of the first
block, the block closest to the start of the volume, will be unused, with the Start Marker Entry at offset 128
within the block.

Since the Free Block Area cannot use partial blocks, it is usually common for the Index Data
Area to use all of the block closest to the start of the volume and have the Start Marker Entry at
the start of that block, adding Unused entries as needed. Note that this not a requirement and
must not be assumed to be. Any space before the Start Marker Entry, relative to the start of that
block, is considered unused, undefined, and may not be assumed to have any set value.

The Unused Entry
The Unused entry is as follows and is simply an available entry for use as a different type when needed.

struct S_SFS_UNUSED {

 bit8u type; // 0x10

 bit8u crc; // zero sum byte check sum

 bit8u resvd[62]; // reserved

};

The Directory Entry
The Directory Entry is as follows and simply holds the name of a directory contained on the volume.

#define DIR_NAME_LEN 53

struct S_SFS_DIR {

 bit8u type; // 0x11

 bit8u crc; // zero sum byte check sum

 bit8u num_cont; // number of cont slots

 bit64s time_stamp; //

 bit8u name[DIR_NAME_LEN]; // UTF-8 null terminated

};

This entry only holds a name for a directory existing on the volume. No other information is given since the
full path for each file is placed within its respected File Entry.

The num_cont field is an 8-bit unsigned integer count of number of continuation entries that follow this entry
used to store the name and path if the name field is not large enough to do so. Continuation entries are
stored sequentially after this entry and are explained later.

The time_stamp field may be updated by the host when the directory is created or any file or directory within
it is also created, moved, renamed, or deleted. It is not part of this specification on when or how often this
field is updated.

The name field holds all or the first part of the full path of this directory using continuation entries as needed.

The File Entry
The File Entry is as follows and holds all of the metadata needed to store the file on the volume.

#define FILE_NAME_LEN 29

struct S_SFS_FILE {

 bit8u type; // 0x12

 bit8u crc; // zero sum byte check sum

 bit8u num_cont; // number of cont slots

 bit64s time_stamp; //

 bit64u start_block; // starting block in data area

 bit64u end_block; // end block in data area

 bit64u file_len; // file length in bytes

 bit8u name[FILE_NAME_LEN]; // UTF-8 null terminated

};

This entry holds the necessary data to find and read the data contents for this file.

The num_cont field is an 8-bit unsigned integer count of number of continuation entries that follow this entry
used to store the name and path if the name field is not large enough to do so. Continuation entries are
stored sequentially after this entry and area explained later.

The time_stamp field is updated by the host when this file is created or modified.

The start_block and end_block entries indicate the starting block and ending block of the file’s contents
relative to the start of the volume, the same block that stores the Super Block. If the file does not contain
any data, i.e.: the file is a zero length file, then no blocks within the Data Block Area are used and both these
entries are written as zero. The end_block field is the last used block of the file. For example, if the block
size is 512 and the file’s length is 623 bytes, the end_block field will be (start_block + 1). If the file’s length
is 512 bytes or less, the end_block field will be the same as the start_block field.

The name field holds all or the first part of the full path of this filename using continuation entries as needed.

The Unusable Entry
The Unusable Entry is as follows and holds a starting and ending block number of unusable blocks.

struct S_SFS_UNUSABLE {

 bit8u type; // 0x18

 bit8u crc; // zero sum byte check sum

 bit8u resv0[8]; // reserved

 bit64u start_block; // starting block in data area

 bit64u end_block; // end block in data area

 bit8u resv1[38]; // reserved

};

Unusable blocks are blocks that are not usable by the host. For example, there could be bad sectors on the
media and this entry is used to indicate which ones. If there are more than one area, non-sequentially linked,
you must have one entry for each non-sequential set of unusable blocks.

The Deleted Directory and File Entries
The Deleted Directory and Deleted File Entries are as follows and are identical to their respective entries
except that the type field has changed.

struct S_SFS_DIR_DEL {

 bit8u type; // 0x19

 bit8u crc; // zero sum byte check sum

 bit8u num_cont; // number of cont slots

 bit64s time_stamp; //

 bit8u name[DIR_NAME_LEN]; // UTF-8 null terminated

};

struct S_SFS_FILE_DEL {

 bit8u type; // 0x1A

 bit8u crc; // zero sum byte check sum

 bit8u num_cont; // number of cont slots

 bit64s time_stamp; //

 bit64u start_block; // starting block in data area

 bit64u end_block; // end block in data area

 bit64u file_len; // file length in bytes

 bit8u name[FILE_NAME_LEN]; // UTF-8 null terminated

};

This is so that you may undelete a file or directory if you so desire. This is where the crc field comes into
play. You must verify that all bytes within this entry and any continuation entries associated with this entry
pass the byte-sum check before you undelete a directory or file name.

For example, the host system might see a deleted entry as an unused entry and each continuation entry
associated with it as also unused. It then might reassign one of the continuation entries but not the deleted
entry.

Note that if you do not wish to have Undelete capabilities, mark all deleted entries, including the
associated continuation entries, as Unused entries. It is not good practice to reassign “deleted”
continuation entries without reassigning the deleted parent entry as well.

Note that just because the Deleted Entry is still valid, this doesn’t mean that the blocks used to
store the deleted file’s data are still intact. It is up to the host to determine if they are still intact
and not part of this specification.

File Names and Directory Names
As other file systems may store directory information within the media’s data area, the SFS does not. Each file has
its full path name stored within its File Entry. Therefore, there is no need to store directory information elsewhere.
However, a Directory Entry is included to simply indicate the name and existence of that directory. It also contains
its full path and name.

For example, a file that may be stored in the (virtual) root directory will simply hold the name of the file. If the volume
includes a directory name, “foobar” for example, there will be a Directory Entry with that name. Then any file within
the directory will have that name followed by a forward slash and then the name of the file as in “foobar/name.txt”.

Note that there is no forward slash at the beginning of the path.

There must be a Directory Entry for every directory name used and its entry in the Index table
must precede any File entry that uses this directory name in its path.

All names, File, Directory, or Volume IDs, are stored as UTF-8 character strings and are null terminated. All character
codes less than 0x0020, codes 0x0080 through 0x009F inclusively, and all of the following codes are invalid codes

and should not be used in any name.

▪ " (double quote, 0x0022)

▪ * (asterix, 0x002A)

▪ : (colon, 0x003A)

▪ < (less than sign, 0x003C)

▪ > (greater than sign, 0x003E)

▪ ? (question mark, 0x003F)

▪ \ (backward slash, 0x005C)

▪ DEL (delete, 0x007F)

▪ NBSP (no break space character, 0x00A0)

This includes forward slashes in file names since forward slashes indicate a path separation.

Continuation Entries
Since the space allocated within a given entry may not be enough to hold the full path and file name, the SFS
specification gives the ability to allocate more space by assigning sequentially consecutive entries as continuation
entries. These entries must follow the associated entry in the direction toward the end of the volume. The associated
entry will indicate how many continuation entries are used.

A continuation entry does not have a type field or any other structured data within it. A continuation entry is just a
64-byte entry to continue the name from the previous entry. With an 8-bit unsigned integer, this allows up to 255
continuation entries to each associated named entry giving a path and name length limit of 16,320 bytes not including
the space within the associated entry.

Note that the continuation entries will be sequentially consecutive in memory, in turn simply
turning the short 53-byte directory name field into a 16,373-byte field.

If a continuation entry is not needed, the num_cont field in the associated entry will be zero.

Remember that all name strings must be null terminated, meaning that all strings must end in a 0x0000 code. If the
complete path will fit within the room allocated in the associated entry, but is not null terminated, you must still allocate
a continuation entry just for the null terminator.

Note that most ASCII characters are UTF-8 characters and will occupy a single byte per
character.

Time Stamp
Some entries and the Super Block contain a 64-bit time_stamp field. This field is the signed integer count of 1/65536ths
of a second before or after an EPOC time of midnight, January 1st, 1970. With this in mind, a value of one (1) is
roughly 15 microseconds, or a value of 3,932,160 being one minute past midnight.

This is a much more accurate or precise measurement of time. Usually, with a write-once file
system, this is not an issue, but the author decided to use this anyway. Precise time stamps are
quite valuable in MAKE instances when a file’s time stamp indicates if it needs to be built or not.

Changes
This specification adds function and features to the existing version 1.0 of the specification, which now breaks that
version. If you plan on supporting version 1.0, please make sure and check the version value in the Super Block.

Version 1.1 (breaks version 1.0)
- Modifications and additions by Benjamin David Lunt.
- Moved the Super Block six bytes toward the start of the volume to leave room for the common signature area.
- Added the CRC byte field to each entry. This moves each following field by an offset of one as well as decrements

the length of the allocated space for the names.
- Version 1.0 specified that an Ending Block must be higher than a Starting Block. This is not the case in this

version. The Ending Block must be equal to or higher than the Starting Block.

Version 1.0
- Initial release by Brendan Trotter, dated 7 March 2009

https://web.archive.org/web/20170315134201/https://www.d-rift.nl/combuster/vdisk/sfs.html

Examples
This section contains a list of examples and DEBUG style dumps to show exactly what a volume might look like.

The first example is a Super Block from a 1.44Meg floppy disk.

Super Block:
00000180 00 00 ..

00000190 9F D8 A6 5B 00 00 8C 0A-00 00 00 00 00 00 C0 04 ...[............

000001A0 00 00 00 00 00 00 53 46-53 1A 40 0B 00 00 00 00 SFS.@.....

000001B0 00 00 02 00 00 00 02 AB

offset contents description
0000018E 0x00005BA6D89F0000 Time Stamp (2018/09/22 17:04:47)

00000196 0x0000000000000A8C Data Block Count (2,700 blocks used)

0000019E 0x00000000000004C0 Index Size in bytes (1,216 bytes)

000001A6 0x534653 Magic Signature ‘SFS’

000001A9 0x1A Version 1.10

000001AA 0x0000000000000B40 Total Blocks in Volume (2,880 blocks)

000001B2 0x00000002 Reserved Blocks (2)

000001B6 0x02 Block Size (2 = 512)

000001B7 0xAB Byte Sum CRC

Second is an example of a File Entry that does not need a continuation.

File Entry: (64 bytes)
00167CC0 12 18 00 00 00 9F D8 A6-5B 00 00 A0 03 00 00 00 [.......

00167CD0 00 00 00 35 04 00 00 00-00 00 00 9C 2A 01 00 00 ...5........*...

00167CE0 00 00 00 73 79 73 74 65-6D 2F 62 6F 6F 74 2F 6C ...system/boot/l

00167CF0 6F 61 64 65 72 2E 73 79-73 00 00 00 00 00 00 00 oader.sys.......

offset contents description
00167C00 0x12 File Entry Type

00167C01 0x18 Byte Sum CRC

00167C02 0x00 No Continuation Entries used

00167C03 0x00005BA6D89F0000 Time Stamp (2018/09/22 17:04:47)

00167C0B 0x00000000000003A0 Start Block (relative to start of the Volume)

00167C13 0x0000000000000435 End Block (relative to start of the Volume)

00167C1B 0x0000000000012A9C File Length in bytes (76,444 bytes)

00167C23 ‘system/boot/loader.sys’,0,... Null terminated name

Now for an entry that uses name continuation.

File Entry: (64 bytes)
00167C40 12 B4 01 24 86 52 E1 B9-59 00 00 F3 03 00 00 00 R..Y..I....

00167C50 00 00 00 F4 03 00 00 00-00 00 00 75 10 00 00 00

00167C60 00 00 00 61 20 6C 6F 6E-67 20 73 74 69 6E 6B 27 ...a.long.stink'

00167C70 6E 20 6E 61 6D 65 20 74-68 61 74 20 6A 75 73 74 n.name.that.just

00167C80 20 67 6F 65 73 20 6F 6E-20 61 6E 64 20 6F 6E 00 .goes.on.and.on.

00167C90 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00167CA0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00167CB0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

offset contents description
00167C40 0x12 File Entry Type

00167C41 0xB4 Byte Sum CRC*

00167C42 0x01 One Continuation Entry used

00167C43 0x00005BA6D89F0000 Time Stamp (2018/09/22 17:04:47)

00167C4B 0x00000000000003F3 Start Block (relative to start of the Volume)

00167C13 0x00000000000003F4 End Block (relative to start of the Volume)

00167C1B 0x0000000000000275 File Length in bytes (629 bytes)

00167C23 ‘a long stink’n name that just goes on and on’,0

*Note that the CRC byte shown above might not be correct due to modification of the examples while writing this
documentation.

Wrap Up and other Notes
Remember that each File and Directory entry contains the full path within its entry. For example, consider the
following directory tree:

\
 foo\
 foo\bar.txt
 foo\bar.bin
 bar\
 bar\foo.txt
 bar\foo.bin

If this is the only thing on the volume, not counting the Start Marker Entry and the Volume ID Entry, you will have six
(6) total entries, two (2) Directory Entries and four (4) File Entries. The File Entry for the last file in the list above,
“bar\foo.bin” will have its name entry contain:

‘bar/foo.bin’,0

Minus the single quotes and comma of course.

When searching for a file within the Index Data Area, be sure to skip the continuation entries when advancing to the
next entry. This means that you have to watch for all FILE, DIR, DEL_FILE, and DEL_DIR entries so that you can
see if either have continuation entries and if so, skip them. Even though all type values are considered invalid
filename characters, it isn’t wise to assume that the first character in a continuation entry will not be a valid type value.

FYSOS Specific
The FYSOS project has specific specifications for bootable volumes. For example, the boot code must pass certain
information to the loader, which in turn passes this and more information to the kernel. One of these items is the
base block address of this volume along with a signature unique to this volume.

The kernel itself does not need the base address, but the boot loader does. For example, the partitioning scheme
was able to gather the base address of the first sector of your boot code. However, since each partitioning scheme
is different, how does the boot code know where it is and where to gather any remaining sectors? Some file systems
account for this with a Reserved Sectors field or other indicators. However, some file systems do not, specifically the
one explained in this document.

Therefore, all FYSOS boot sector code reserves the 12 bytes just before the 0xAA55 signature in the first sector to
indicate the base address and this unique signature. This structure is located at offset 0x1F2 within the first sector
of the volume no matter the size of the sector or block used.

struct S_FYSOS_BOOT_SIG {

 bit32u signature; // unique signature to this volume

 bit64u base_addr; // base LBA of this sector/block

 bit16u boot_sig; // BIOS expected boot signature of 0xAA55 (0x55 0xAA)

};

These 12 bytes will remain reserved for use by the FYSOS boot sector specification for all FYSOS bootable volumes,
and will be assigned and written to at volume build time.

Remember, this is not in the MBR, where it would get in the way of the partition table. It is in the PBR, or Partition
Boot Record, the sector that starts the volume it is associated with. If this happens to be the first sector, as with the
file system described here, there won’t be any partitioning scheme used anyway.

Therefore, all bootable volumes designed to be booted by the FYSOS 1st and 2nd stage loaders must have the
signature shown at the address given on the bottom of the previous page. This is FYSOS specific and not part of
this SFS specification.

Thank you to Brendan for allowing me to document and add to his original specification. I would appreciate any
feedback, good or bad, from anyone that reads this, and more importantly, implements this file system. Contact
information is at the top of this document.

