
c© The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)
http://www.Assembly-Journal.com

Detecting operating systems without
Microsoft Advanced Programming Interface

Thomas Kruse
Universitas Virtualis

Abstract

Today nearly all programmers use the Advanced Programming Interface (API) to receive information’s about given system
values. By using this API’s, we don’t have to take care which operating system is currently available.

But sometimes it might be needful to avoid the usage of such API’s. This situation is given during development of software
protections in order to avoid importing functions which - eventually - will point a reverse engineer to a solution.

This essay show up a way to detect the today given operating systems from Microsoft: Windows 95, 98, ME - the non NT-based
operating systems - and Windows NT4, 2000, XP, 2003 - the NT-based operating systems.

The shown source code is in Microsoft Assembler style (MASM [3]).

Keywords: Microsoft Operating Systems, Software Protection, Assembly Programming, System Internals

The authorThomas Kruse has his main research focus on operating-system independent code optimising and software-protection development. Heis Associate

Editor of Assembly-Journal and CodeBreakers-Journal.

Microsoft and Windows are registered trademarks of the Microsoft Corporation



The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

I. Introduction

When analysing the structure of the Thread Environment Block (TEB - also known as Thread Information Block TIB) on
different operating systems, we find additional data followed by this structure. This additional data seems to have - on non
NT-based operating systems - no logical structure or lengthdefinition, where NT-based operating systems store the information
inside the Process Environment Block (PEB). The only way to figure out the meaning of this data for non NT-based operating
systems is to debug the same application on different operation systems[2].

II. Application start

There are many ways in detecting an operating system. It could be done by using the Windows API functionGetVersionEx[1]
and checking the version values returned in structureOSVERSIONINFO(EX)[1], or by accessing Register CS. Another way is
analysing the registers during start up of an application. There are several rules for them on how operating systems prepare
several registersbeforeexecuting the first instruction:

Startup values for Windows 95/98/ME
EAX == Application Entry Point
EBX == 00530000h, a fixed value

Startup values for Windows NT/2000/XP/2003
EAX == NULL
EBX == 7FFDF000h, pointer to (PEB)

By knowing this rules we where able to check the operating system base during start up. But then we need to store the register
values of EAX and EBX for further usage - or resolve them in a different way.

A. Thread Environment Block

The TEB is prepared during application start up and contain pointers to thread related additional data. The TEB structure is
available on all operating systems. It’s size is defined to 34h Bytes. The TEB address could be resolved by accessing the
segment register FS in the following way:

assume fs:nothing
mov eax,fs:[18h]

The register EAX will contain the base address of this block.The TEB contains - at address 18h inside the structure - a pointer
to itself:

pSelf DWORD ? ; 18h pointer to TEB/TIB

The last entry of TEB is the pointer to process database. On NT-based operating systems this value will point to the address
of Process Environment Block (see Section II-C)

B. Additional data following TEB

Told in Section I, this additional data has no logical structure and differs on each non NT-based operating system. On Windows
NT, 2000, XP and 2003 this additional Data is defined as follows:

NT_TEB_ADDON struct
LastErrorValue DWORD ? ; 00h (34h TEB)
LastStatusValue DWORD ? ; 04h (38h TEB)
CountOwnedLocks DWORD ? ; 08h (3Ch TEB)
HardErrorsMode DWORD ? ; 0Ch (40h TEB)

Copyright c© 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for personal use only are permitted. Reproduction
and distribution without permission is prohibited.

2



The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

NT_TEB_ADDON ends

Windows 95, 98, ME didn’t have such a structure; the additional data is scrambled!

C. Process Environment Block

Windows NT-based operating systems store process related data inside the Process Environment Block. The address of this
structure is avaliable by accessing the segment register FS:

assume fs:nothing
mov eax,fs:[30h]

The register EAX will contain the base address of PEB.

pProcess DWORD ? ; 30h pointer to process database

The version information is stored inside the PEB structure:

OSMajorVersion DWORD ? ; A4h <=4->NT / 5->2K/XP/2K3
OSMinorVersion DWORD ? ; A8h 0->2K / 1->XP / 2->2K3

D. NT-based definitions

Windows NT, 2000, XP and 2003 use fixed addresses to store PEB and TEB. The PEB is always stored at address 7FFDF000h
and TEB is starting at 7FFDE000h. By knowing these two fixed values, it is possible to detect the operating system base.

III. The Trick

Section II-B has shown an add-on structure for NT-based operating systems. The data exists on non NT-based operating
systems, too. But it is stored in a different way. To resolve correct memory positions - related to detect the operating system
- we use a trick the analyse the additional data.

If we take a closer look to the NTTEB ADDON structure shown in Section II-B, we see the entryLastErrorValue. Nearly
all Windows API’s will return an error value which is accessible via GetLastError[1]. In addition to this, it is possible to
manipulate theLastErrorValuevia SetLastError[1]API. By using this API and monitoring the memory area behind the TEB,
the locations for theLastErrorValueare:

Windows 95 - TEB-base + 60h
Windows 98 - TEB-base + 60h
Windows ME - TEB-base + 74h

Now we are able to detect Windows ME or Windows 95/98. First step to our solution, but not the final one. It is possible to
detect a difference between Windows 95 and Windows 98.

Section II showed the start up values and their rules. The start up value of EBX on non NT-based OS is 00530000h. Exactly
this value will be found inside the additional data part - close to the now resolvedLastErrorValue. By analysing it’s location,
the result will be:

Windows 95 - TEB-base + 58h
Windows 98 - TEB-base + 54h
Windows ME - TEB-base + 7Ch

Now we are able to differ between each non NT-based operatingsystem.

Copyright c© 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for personal use only are permitted. Reproduction
and distribution without permission is prohibited.

3



The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

IV. Code creation

Right now, we where able the detect the version information for each operating system. We want an operating system
independent code, we need to structure the given information’s. Also it should be possible to resolve the version information
workflow independent. Section VI will show the complete solution in Assembler.

First of all, we get the base addresses of PEB and TEB and resolve the operating system base by analysing them:

assume fs:nothing
mov ebx,fs:[18h] ; get self pointer from TEB
mov eax,fs:[30h] ; get pointer to PEB / database
.if eax==7FFDF000h && ebx==7FFDE000h

; WinNT based
.else

; Win9X based
.endif ; of base check NT/9X

The version information for NT-based operation systems is stored inside PEB. We only have to analyse the values of
OSMajorVersionandOSMinorVersion:

mov ebx,[eax+0A8h] ; get OSMinorVersion
mov eax,[eax+0A4h] ; get OSMajorVersion
.if eax==5 && ebx==0 ; is it Windows 2000?
.elseif eax==5 && ebx==1 ; is it Windows XP?
.elseif eax==5 && ebx==2 ; is it Windows 2003?
.elseif eax<=4 ; is it Windows NT?
.endif

Non NT-based operating systems could be detected by analysing the additional data area behind TEB, searching the value
00530000h:

mov edx,00530000h ; the value to search
mov eax,fs:[18h] ; get the TEB base address
mov ebx,[eax+58h] ; TEB-base + 58h (W95)
mov ecx,[eax+7Ch] ; TEB-base + 7Ch (WME)
mov eax,[eax+54h] ; TEB-base + 54h (W98)
.if ebx==edx ; is it Windows 95?
.elseif eax==edx ; is it Windows 98?
.elseif ecx==edx ; is it Windows ME?
.endif

V. Conclusions

Resolving the operating system by using this technique is only one possibility to avoid the usage of Advanced Programming
Interface functions. Other functions, for exampleGetCommandLine[1], IsDebuggerPresent[1]or named functions in this essay
could be ”rewritten” in the same way. In other words: the reverse engineer isn’t able to setbreakpointson API function calls,
because they didn’t exist. And mixing different operating system solutions together makes life even harder for him.

References

[1] Microsoft Corporation,Microsoft Developer Network, http://msdm.microsoft.com
[2] Yuschuk, O.,Olly Debugger, http://home.t-online.de/home/ollydbg
[3] Hutchenson, S.,MASM V8, http://www.masmforum.com

Copyright c© 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for personal use only are permitted. Reproduction
and distribution without permission is prohibited.

4



The Assembly-Programming-Journal, Vol. 1, No. 1 (2004)

VI. Appendix

.const
;-- return values from OS_GetOS
OS_UNKNOWN equ -1
OS_WIN95 equ 1
OS_WIN98 equ 2
OS_WINME equ 3
OS_WINNT equ 4
OS_WIN2K equ 5
OS_WINXP equ 6
OS_WIN2K3 equ 7

.code
OS_GetOS proc

local _theReturnValue:DWORD
pushad ; store all registers
mov _theReturnValue,OS_UNKNOWN
assume fs:nothing
mov ebx,fs:[18h] ; get self pointer from TEB
mov eax,fs:[30h] ; get pointer to PEB / database
.if eax==7FFDF000h && ebx==7FFDE000h ; WinNT based

mov ebx,[eax+0A8h] ; get OSMinorVersion
mov eax,[eax+0A4h] ; get OSMajorVersion
.if eax==5 && ebx==0 ; is it Windows 2000?
mov _theReturnValue,OS_WIN2K

.elseif eax==5 && ebx==1 ; is it Windows XP?
mov _theReturnValue,OS_WINXP

.elseif eax==5 && ebx==2 ; is it Windows 2003?
mov _theReturnValue,OS_WIN2K3

.elseif eax<=4 ; is it Windows NT?
mov _theReturnValue,OS_WINNT

.endif
.else ; Win9X based

mov edx,00530000h ; the magic value to search
mov eax,fs:[18h] ; get the TEB base address
mov ebx,[eax+58h] ; TEB-base + 58h (W95)
mov ecx,[eax+7Ch] ; TEB-base + 7Ch (WME)
mov eax,[eax+54h] ; TEB-base + 54h (W98)
.if ebx==edx ; is it Windows 95?
mov _theReturnValue,OS_WIN95

.elseif eax==edx ; is it Windows 98?
mov _theReturnValue,OS_WIN98

.elseif ecx==edx ; is it Windows ME?
mov _theReturnValue,OS_WINME

.endif
.endif ; of base check NT/9X
popad ; restore all registers
mov eax,_theReturnValue
ret ; return to caller

OS_GetOS endp

Copyright c© 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for personal use only are permitted. Reproduction
and distribution without permission is prohibited.

5


