
Errata: USB: The Universal Serial Bus
2nd Edition

Dated: 24 November 2017

Listing 4-2: Last line:
 Change
 ~QUEUE_HEAD_PTR_MASK
 to
 QUEUE_HEAD_PTR_MASK
 (remove the ‘~’ character)

Page 6-2: Bottom of page: should point to Figure 6- 1, not 6-2.

Page 7-8: Middle of page: “effected” to “affected”.

Page 7-16: The Port Enable bit can be disabled by w riting a 0 to this
bit. However, it cannot be enabled by writing a 1 to this bit.

Page 9-10: Legacy Support Ext. Caps List entry:
The text states that if this entry exists, it must be the first
entry. I remember reading a specification somewher e that
stated that it would be the first entry. Also, the xHCI
specification states that it will be at Extended Capabilities
Address + 0x00. However, other comments and documents tend to
disagree, therefore, don’t assume it is the first e ntry.

Page 9-34: Should be Figure 9-3 in both instances.

Page 9-21: Table 9-25:
The first column in table 9-25, the 0x0400 and 0x04 40 should be
0x0420 and 0x0460 respectively. Then the 192-byte reserved
size should now be 160 bytes in size.

Page 11-6:
Clear the toggle bit in the SETUP packet, then togg le it for
each packet there after within this transfer, makin g sure the
STATUS packet has it set. The description (two pla ces) on this
page states just the opposite, which is wrong. (I don’t know
how I let that make it to production... :-(

Figure 11-1: TD0 0x1234010:
 Third dword in that TD should be 0x00E0002D.
Figure 11-1: TD1 0x1234030:
 Third dword in that TD should be 0x00E80069.
Figure 11-1: TD2 0x1234050:
 Third dword in that TD should be 0xFFE800E1.
Figure 11-2: TD0 0x1234010:
 Third dword in that TD should be 0x00E0002D.

Errata: USB: The Universal Serial Bus Page 2

Figure 11-2: TD1 0x1234030:
 Third dword in that TD should be 0xFFE80069.
Figure 13-1: TD2 0x12340E0:
 Third dword in that TD should be 0x80000C80.
Figure 13-4: TD1 0x12340A0:
 Third dword in that TD should be 0x80000C80.

Page 12-16: Note Box:
You need to clear the bufferRounding bit, not set i t, for the
controller to stop execution of the ED.

Starting with Page 22-8, the table listed as 22-9 s hould be 22-11,
 with each table and reference to that table there after, incremented
 by 2. I added a couple of tables and forgot to u pdate the rest...
 However, I got the Appendix C correct... :-)

Appendix G: Table G-3:
 Two pointers to Table G-3 and G-4, should be Tabl es G-4 and G-5.

Please change the read_pci() and write_pci() functi ons in pci.h to the
following:

// read from the pci config space
bit32u read_pci(const bit8u bus, const bit8u dev, c onst bit8u func,
 const bit8u port , const bit8u len) {
 bit32u ret;

 const bit32u val = 0x80000000 |
 (bus << 16) |
 (dev << 11) |
 (func << 8) |
 (port & 0xFC);
 outpd(PCI_ADDR, val);
 ret = (inpd(PCI_DATA) >>
 ((port & 3) * 8)) & (0xFFFFFFF F >> ((4-len) * 8));
 return ret;
}

// write to the pci config space
void write_pci(const bit8u bus, const bit8u dev, co nst bit8u func,
 const bit8u port, const bit8u len, bit32u value) {
 bit32u val = 0x80000000 |
 (bus << 16) |
 (dev << 11) |
 (func << 8) |
 (port & 0xFC);

Page 3 Errata: USB: The Universal Serial Bus

 outpd(PCI_ADDR, val);

 // get current value
 val = inpd(PCI_DATA);
 // make sure value is of 'len' size
 value &= (0xFFFFFFFF >> ((4-len) * 8));

 // mask out new section
 if (len < 4) {
 val &= (0xFFFFFFFF << (len * 8));
 val |= value;
 } else
 val = value;

 outpd(PCI_DATA, val);
}

And Listing 2-1 on page 2-3 should be:

Listing 2-1: Read value from the PCI
bit32u read_pci(const bit8u bus,
 const bit8u dev,
 const bit8u func,
 const bit8u port,
 const bit8u len) {
 bit32u ret;

 const bit32u val = 0x80000000 |
 (bus << 16) |
 (dev << 11) |
 (func << 8) |
 (port & 0xFC);
 outpd(PCI_ADDR, val);
 ret = (inpd(PCI_DATA) >>
 ((port & 3) * 8)) & (0xFFFFFFFF >> ((4-len) * 8));
 return ret;
}

The USB_IF has moved some of their files. In Appen dix A, the following
URLs have been updated:

Rev 1.1 MSD Control/Block/Interrupt (usb_msc_cbi_1.1.pdf)
http://www.usb.org/developers/docs/devclass_docs/usb_msc_cbi_1.1.pdf

Errata: USB: The Universal Serial Bus Page 4

Rev 1.0 of MSD UFI (Floppy) (usbmass-ufi10.pdf)
 http://www.usb.org/developers/docs/devclass_docs/usbmass-ufi10.pdf

Rev 1.0 of MSD Bulk transport (usbmassbulk_10.pdf)
http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf

Device Class Documentation
 http://www.usb.org/developers/docs/devclass_docs/

Rev 1.1 of the USB Printing Devices (usbprint11.pdf)
http://www.usb.org/developers/docs/devclass_docs/usbprint11a021811.pdf

Rev 1.4b Mass Storage Class (usb_msc_overview_1.4b.pdf)
www.usb.org/developers/docs/devclass_docs/

 Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf

Rev 1.12 of the HID Usage Tables (hut1_12.pdf)
http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

Rev 1.11 of the HID specification (hid1_11.pdf)
http://www.usb.org/developers/hidpage/HID1_11.pdf

Intel Panther Point Controllers
The Panther Point chipset has a xHCI controller and at least one EHCI controller that can
share the USB sockets. When the EHCI controller(s) have control of the sockets, all
devices are treated as USB 2.0 devices, including Super Speed devices. The xHCI
controller will not see a connection. Therefore, you must switch all available sockets to
the xHCI controller, noting that not all sockets may be switchable.

To do this, you write 0xFFFFFFFF to the PCI’s Config Space Registers USB3_PSSN
(0xD8) and XUSB2PR (0xD0). Register USB3_PSSN being the xHCI control mask with
a set bit indicating an xHCI socket, and register XUSB2PR being the EHCI control mask
with a clear bit indicating an EHCI socket. Therefore setting all bits in both registers will
switch all available xHCI sockets to the xHCI controller.

To see if the installed controller is a Panther Point, you must check the PCI VendorID and
DeviceID values. The VendorID will be 0x8086 indicating Intel, while the DeviceID
should be 0x1E31, with a revision register value of 04h.

UHCI and the Schedule
It seems that the way I was describing the UHCI’s stack was quite confusing to some
people, so I have reworded it and updated the outline at the end of chapter 4. See the
next page for the modified outline.

Page 5 Errata: USB: The Universal Serial Bus

Outline 4-1: The UHCI Process

